Solar Small-scale Magnetoconvection
نویسنده
چکیده
Magnetoconvection simulations on mesogranule and granule scales near the solar surface are used to study the effect of convective motions on magnetic fields: the sweeping of magnetic flux into downflow lanes, the twisting of magnetic field lines, and the emergence and disappearance of magnetic flux tubes. Fromweak seed fields, convective motions produce highly intermittent magnetic fields in the intergranular lanes that collect over the boundaries of the underlying mesogranular scale cells. Instances of both emerging magnetic flux loops and magnetic flux disappearing from the surface occur in the simulations.We show an example of a flux tube collapsing to kilogauss field strength and a case of flux disappearance due to submergence of the flux. We note that observed Stokes profiles of small magnetic structures are severely distorted by telescope diffraction and seeing, so caution is needed in interpreting lowresolution vector magnetograms of small-scale magnetic structures. Subject headinggs: MHD — Sun: granulation — Sun: magnetic fields
منابع مشابه
Zeeman-Tomography of the solar photosphere 3-Dimensional surface structures retrieved from Hinode observations
Aims. The thermodynamic and magnetic field structure of the solar photosphere is analyzed by means of a novel 3-dimensional spectropolarimetric inversion and reconstruction technique. Methods. On the basis of high-resolution, mixed-polarity magnetoconvection simulations, we used an artificial neural network (ANN) model to approximate the nonlinear inverse mapping between synthesized Stokes spec...
متن کاملOn the Interaction between Convection and Magnetic Fields
Turbulent convection in the solar photosphere can act as a small-scale dynamo, maintaining a disordered magnetic field that is locally intense. On the other hand, convection is inhibited in the presence of a strong, externally imposed magnetic field, as for instance, in a sunspot. Large-scale, three-dimensional, numerical experiments on highly nonlinear magnetoconvection in a Boussinesq fluid s...
متن کاملGeneration of Alfvén Waves by Small-Scale Magnetic Reconnection in Solar Spicules
Alfvén waves dissipation is an extensively studied mechanism for the coronal heating problem. These waves can be generated by magnetic reconnection and propagated along the reconnected field lines. Here, we study the generation of Alfvén waves at the presence of both steady flow and sheared magnetic field in the longitudinally density stratified of solar spicules. The initial flow is assumed to...
متن کاملMagnetoconvection and dynamo coefficients: Dependence of the α effect on rotation and magnetic field
We present numerical simulations of three-dimensional compressible magnetoconvection in a rotating rectangular box that represents a section of the solar convection zone. The box contains a convectively unstable layer, surrounded by stably stratified layers with overshooting convection. The magnetic Reynolds number, Rm, is chosen subcritical, thus excluding spontaneous growth of the magnetic fi...
متن کاملRealistic Magnetohydrodynamical Simulation of Solar Local Supergranulation
Three-dimensional numerical simulations of solar surface magnetoconvection using realistic model physics are conducted. The thermal structure of convective motions into the upper radiative layers of the photosphere, the main scales of convective cells and the penetration depths of convection are investigated. We take part of the solar photosphere with size of 60 × 60 Mm in horizontal direction ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005